最新消息:

模型制作说明(废品利用手工制作小火箭说明书)

媒体模版 admin 浏览 评论

毕业设计论文

目录

零件介绍 3

设计加工该模具。 4

1零件工艺性分析 4

2确定工艺方案及级进冲裁的顺序安排 4

3模具设计计算 5

(1)确定排样设计 5

(2):调料宽度 6

(3)确定步距 8

(4):计算总压力 8

(5):确定压力中心 8

(6)确定刃口尺寸 9

①冲孔模凸模 9

②胀形凸模 9

③翻边模尺寸计算 10

④弯曲模尺寸 11

(7)确定各主要零件的结构尺寸 13

4设计并绘制总装配图、选取标准件 14

5绘制零件图 15

6编制主要零件的加工工艺规程 19

7模具的装配 19

零件介绍

零件名称:背板

生产批量:大批量

材料: 20

设计加工该模具。

1零件工艺性分析:冲压件的工艺性性是指冲压件对冲压工艺性的适应性,即设计的冲压件在结构,形状尺寸以及公差等各方面是否符合冲压加工的工艺要求,冲压件工艺性的好坏直接影响到冲压件的冲压加工的难易程度。

2确定工艺方案及级进冲裁的顺序安排

(1)①先冲孔或切口,最后落料或切断;

②采用定距侧刃时,定距侧刃切边工序应安排与首次冲孔同时进行。

(2)多工序工件用单工序冲裁时的顺序安排

①先落料,使毛坯与条料分离,再冲孔或冲缺口;

②冲裁大小相同、相距较近的孔时,应先冲大孔再冲小孔模具结构形式综上分析,该零件尺寸不大,精度,该零件进行冲压加工的基本工序为冲孔、胀形、翻边、弯曲和落料,

其加工工艺方案有二种。

冲孔,翻边、胀形、弯曲、落料

冲工艺孔、胀形、冲翻边孔、翻边、弯曲、落料

分析冲压方案如下:

方案一:模具结构相对简单一点,但翻边的孔形易受下一步胀形的影响。

方案二:工序多一点,但是易保证各部的精度不受下一步的影响,故零件加工精度较高。

综上所述,为保证各项技术要求,选用方案二,其工序如下:

冲ø4的孔和3*15的矩形孔;一次性胀形内部形状;冲5-ø1.8的孔;翻边5-ø3和冲5-ø1.8的孔;翻边5-ø3;落料。

3模具设计计算

确定排样设计

排样要求级进模中大部分采用侧刃定位,侧刃位置要适当,排样时应避免凸凹模单边工作,在不浪费材料的前提下,可将交错排样改为并列排样,消除单边冲裁。

冲压件在板料或者条料上布置的方式成为排样,不合理的排样会浪费材料衡量排样经济性的指标是排样的利用率。其公式如下:

η=S/S0*100/100

S表示工件的实际面积

S0表示所用材料的面积

从上式可以看出若能减少废料的面积,则材料的利用率很高,废料可以分为工艺废料与结构废料两种。结构废料由工件的形状特点而定,一般不能改变,搭边和余料属于工艺废料。是余排样形式和冲压方式有关的废料,设计合理的排样方案,减少工艺废料能够提高材料的利用率。排样的合理与否不但影响到制件的质量,模具的结构和寿命,制件的生产率和模具的成本技术等经济指标,因此设计排样时应该考虑如下原则:

1,提高材料的利用率,但是要在不影响制件的使用性能的前提下;

2,排样方法应该使冲压操作方便,劳动强度小且安全;

3,模具结构简单,寿命高;

4,保证制件质量和对板料纤维方向的要求。

观察工件以及查表:2.5.2《搭边a和a1数值》(低碳钢)

本方案采取无废料排样

(2):调料宽度:

由于背板里面的变形里边缘较远,故可以认为里面的变形不影响条料尺寸,R=0.8, R/t=0.8/0.8=1

弯曲件毛坯展开长度的计算:∵R〉0.5t

∴L=3+3+73.4+1.571*(0.8+X*0.8)

∵X表示各段圆弧中性层位移系数

查表3.3.3得X=0.42

∴L=81.5

无侧压装置的条料宽度:B=【D+2(a+δ)+c】0-δ

即B=81.50.50

(3)确定步距:级进模进料步距为 48mm

(4):计算总压力

F冲=kptlτ=1.3*0.8*2*3.14*0.9*350=2057

τ表示可用抗拉强度

F卸=kFp=0.04*2057=82.28

F推=nk1Fp=h/t*k1Fp=5/0.8*0.05*2057=642.8

F翻=1.1Лt(D-d0)бb=1.1*3.14*0.8*

(3.8-1.8)*450=2486

F胀=kltбb=0.7*L*0.8*450=67374

F弯=(0.7kbt2бb)

/(r+t)=7371

(5):确定压力中心

以水平中心线为X轴

易知y0=0

F1=kp*t*l*τ=1.3*0.8*56.5*350=20566

F2=10* F翻=24860

F3=10* F冲=20570

F4= F胀=67374

F5= kp*t*l*τ=1.3*0.8*36*350=13104

F6= kp*t*l*τ=1.3*0.8*2*3.14*2*350=4571

X0=(F1*46.5+F2*94.5+F3*142.5+F4*190.5+F5*214.5+F6*262.5)/(F1+ F2+F3+F4+F5+F6)=152.8

即压力中心为(x0,y0)

(153,0)

(6)确定刃口尺寸

①冲孔模凸模,计算公式:dp=(dmin+XΔ)0-δp

注意δp=0.25Δ

孔ø40+0.3 X取0.5 dp=4.150-0.08=40.150.08

孔ø1.80+0.3 dp=1.90-0.07

中心距制造偏差取工件偏差的1/8

冲孔凹模,按照凸模刃口实际尺寸配制,保证双边间隙0.25~0.36

②胀形凸模,

胀形尺寸,60-0.87

胀形工序,工件未标注公差,按IT14级制造,凸凹模的制造精度按照IT9级制造,胀形单边间隙Z/2=1.1t

凸凹模的制造精度按照IT9级制造,查表得,δ凸=δ凹=0.087

D凹=(D-0.075Δ)0+δ凹

=(6-0.75*0.87)0+0.087=5.350+0.087

D凸=(D凹-Z)0-δ凸=3.590-0.087

胀形尺寸 260-0.9

胀形工序,工件未标注公差,按IT14级制造,凸凹模的制造精度按照IT9级制造,胀形单边间隙Z/2=1.1t

凸凹模的制造精度按照IT9级制造,查表得,δ凸=δ凹=0.09

D凹=(D-0.075Δ)0+δ凹

=(26-0.75*0.9)0+0.09=25.330+0.09

D凸=(D凹-Z)0-δ凸=23.570-0.087

③翻边模尺寸计算

D=4.6-0.8=3.8

d0=3.8-2*(2-0.43*1-0.72*0.8)

=3.8-2*0.994=1.8

翻边工序,工件未标注公差,按IT14级制造,凸凹模的制造精度按照IT9级制造,胀形单边间隙Z/2=1.1t

凸凹模的制造精度按照IT9级制造,查表得,δ凸=δ凹=0.063

D凸=(D-0.075Δ)0+δ凸

=(3-0.75*0.2)0+0.063=2.850+0.063

D凹=(D凹+Z)0-δ凹=6.360-0.063

④弯曲模尺寸

.1弯曲圆角部分是弯曲变形的主要变形区

变形区的材料外侧伸长,内侧缩短,中性层长度不变。

2.弯曲变形区的应变中性层

应变中型层是指在变形前后金属纤维的长度没有发生改

变的那一层金属纤维。

3.变形区材料厚度变薄的现象

变形程度愈大,变薄现象愈严重。

4.变形区横断面的变形

变形区横断面形状尺寸发生改变称为畸变。主要影响因

素为板料的相对宽度。

(宽板):横断面几乎不变;

(窄板):断面变成了内宽外窄的扇形。

弯曲模尺寸计算

Rmin/0.8=0.5→Rmin=0.4

∵r=0.8∴r≥0.4且r/0.8≤5~8

故该零件可以成形

弯曲凸模凹模之间的间隙

C=tmin+nt=0.8+0.8*0.05=0.84

查表3.4得 n=0.05

凸模和凹模工作尺寸及公差:

弯曲件标的是外形尺寸,

凹模尺寸Ld=(L-0.5Δ)0+δd=7500.02

凸模尺寸Lp=(Ld-2C)0-δp=73.320-0.05=730-0.87

弯曲件凹模部分深度h0=3查表3.4.2

∵t≤1∴h0=3mm

(7)确定各主要零件的结构尺寸

a,凹模外形尺寸的确定。

凹模厚度H的确定(按经验公式)

H=kb(H>=15mm)

其中,B为最大型孔的宽度,取b=90;k为系数,

查冲压手册取0.35

H=0.35*90=31.5mm

故凹模厚度取35mm

凹模长度L的确定

L=步距*6+2*50≈440

凹模宽度的确定

B=步距+工件宽+2C≈200

b,凸模长度的确定

凸模长度的计算为

L凸=h1+h2+h3+Δ

其中导料板厚h1为9mm,

卸料板厚为h2为21;凸模固定板厚h3为30

L凸=90

其中弯曲凸模最长,为98mm

选用冲床的公称压力,应大于算出的总压力

P0=151.1kN

4设计并绘制总装配图、选取标准件

按以确定的模具形式及参数,从冷冲模标准中选取标准模架,根据所选的压力机,绘制模具总装配图为单排冲孔胀形翻边弯曲落料级进模,下图为装配图

5绘制零件图

(1)上模座板

(2)垫板

凸模固定板

(4)导料板

(5)凹模板

(6)下垫板

(7)凸模

6编制主要零件的加工工艺规程

(1)冲压工艺规程编制的主要内容和步骤

冲压工艺规程是指导冲压件生产过程的工艺技术文件。冲压工艺文件一般指冲压工艺过程卡片,是模具设计以及指导冲压生产工艺过程的依据。

冲压工艺规程的制订主要有以下步骤:

《1》分析冲压件的工艺性

冲压件的工艺性是指冲压件对冲压工艺的适应性,即设计的冲压件在结构、形状、尺寸及公差以及尺寸基准等各方面是否符合冲压加工的工艺要求。

产品零件图是编制和分析冲压工艺方案的重要依据。

《2》确定冲压件的成形工艺方案

确定冲压件的工艺方案时需要考虑冲压工序的性质、数量、顺序、组合方式以及其它辅助工序的安排。

此项在此省略,因为另外单独制作工艺卡

7模具的装配

模具装配没有严格的工艺规程,装配工艺过程有模具钳工掌握,但模具装配都有一定的装配顺序。

例如:级进模先装配下模,再以下模为准装配上模,复合模时先装凸凹模,然后再装凹模和凸模,最后总装;导料板则以卸料板为基准件进行装配,无导向,导套的模具,可以先装配下模,也可以先装配上模等。冷冲模装配的主要技术要求是保证凸凹木的均匀配合间隙

装配叙述

以下模座为基准件,压装导柱

按下模座的中心线为基准,找正凹模的位置后,用平行夹将凹模与下模座夹紧,以凹模上的螺钉过孔,销孔为引导,在下模座上钻螺纹孔底孔、攻螺纹、钻、铰销孔;按凹模型孔在模座上划出漏料孔线,取下凹模,铣下模座漏料孔

将固定卸料板对凹模的长侧面找正平行,校正左右位置后与凹模一起夹紧,然后翻转过来,按凹模配作卸料板上的螺钉过孔和销孔

先将导料板对凹模的长侧找正平行,校正左右位置后与凹模一起夹紧;再找正另一块导料板后也与凹模一起夹紧;然后翻转过来,按凹模配制导料板上的螺钉过孔和销孔。

将凹模、卸料板、导料板都装在下模座上,以圆柱销定位,用螺钉连接。

以上模座为上模部件的基准件,压装导套。

以凸模固定板与凸模组件为基准,压装上凸模。

将所有凸模插入凹模的型孔,在凸模固定板和凹模之间垫等高垫铁,使凸模插入凹模型孔1mm左右;放上垫板,装上上模座,用平行夹将凸模固定板、垫板、上模座夹持在一起;将整个模具翻过来,用透光法通过下模座的漏料孔进行观察,调整凸凹模配合间隙的均匀性,调整好后拧紧平夹;将模具再翻过来,轻巧上模座,使凸模从凹模型孔中退出,垫纸试冲,再调整,再冲………直到间隙均匀为止。

拧紧平夹,取下上模部件;配钻螺钉孔、配钻、铰销孔。

装上销钉和螺钉。

将装配好的模具装在冲床上试冲,检查送料是否流畅,凸凹模配合间隙是否均匀,步距是否正确,卸料是否灵活,冲件是否符合图纸要求。

参考文献:

1、《实用模具设计简明手册》主编邓明机械工业出版社出版

2、《冲压工艺与模具设计》主编成虹高等教育出版社出版

3、《互换性与测量技术》主编陈于萍高等教育出版社出版

4、《模具设计标准化与原型结构设计》

主编许发樾机械工业出版社出版

5、《冲压手册》主编王孝培机械工业出版社出版

水火箭的制作(单槽):

1准备材料。三四个2.5升的健力宝瓶或可乐瓶,若干X光片,几个化学器材用的3号和4号软胶塞,一整套单车气门心,剪刀、小刀各一把,透明胶、双面胶和绝缘胶布,502胶水一支。

2机翼制作。用剪刀将X光片裁成大小相同的直角梯形28块,梯形长12cm,高6cm,斜腰和长底夹角约45度。另裁4个同上规格但高为8cm,短底相连接两面重叠的梯形(用作机翼的表面)。用双面胶将7小块梯形紧密粘成一个厚的梯形,使之平直平坦,然后用一个大的双面梯形将其紧密包住并粘紧。为使机翼的厚面平整,可用剪刀或小刀修平修直,然后将机翼的厚面用绝缘胶封住。最后,将机翼两边长出的部分向外折成90度。这样,按上述方法将其余的X光片做成三个机翼。

3机身制作。取一个健力宝瓶(瓶头弧线过度比较自然,作火箭头利于减小空气阻力)在离下端11cm处将其横截剪开,用绝缘胶将带瓶口的部分粘紧在另一个瓶子的底部,用绝缘胶在接口处多缠绕几圈以牢固。

4气塞制作。取一个4号的软胶塞,用开洞工具在胶塞的底部正中处开一个比气门芯套筒稍小一点的平直洞,然后用小刀横切去细端约0.6cm;将气门芯套筒上一个面积较大的“戒指”(五金店有卖),从软胶塞的细端往上把气门芯装好,套上一个同样的“戒指”,拧上螺丝,稍微紧就可以。最后将气塞用磨刀石磨成圆柱体,达到刚好能够完全进入可乐瓶口或稍紧一点,装上气门芯即可使用。

5炮头制作。取一个3号软胶塞用小刀将其削尖且圆滑。

6组装机翼。取一个健力宝瓶剪一个长比机翼长稍长的两面相通的圆柱体,然后用透明胶和绝缘胶将4个机翼4等分紧密粘好。最后,将粘好机翼的圆柱体套在水火箭的底部使其与瓶口相平(这不一定是最佳位置,可在飞行实践中上下调节寻找确定),用绝缘胶缠绕粘紧。

7其他。为增大气塞和瓶口的接触面以增大瓶内气压,可用小刀将气塞大端削细一点并使之圆平粗糙。由于机身增长了一节做火箭头,火箭头部分较轻不平衡,可适当往里面塞纸以达到平衡。为尽可能减小空气阻力,将用软胶塞做成的炮头用502胶水在火箭头瓶口粘好。

按以上方法一个简单的水火箭便制作完成。根据我们研制的水火箭,通过实践的改进,水平方向飞行可达160米左右,竖直方向飞行可达40~50米。

水火箭发射方法:

1水量调控。水火箭用水量和火箭容气空间有一定的比例,不能太多也不能太少,最佳用水量约为火箭容气空间的1/4到2/5之间(2.5升的空间大约装600毫升左右,可多试验几次寻找确定)。

2发射角度。水平方向飞行,由于空气的阻力,发射的最佳角度在50到55度之间,不同的水火箭可能不同,可通过控制变量的方法试验确定。(我们制作的水火箭最佳角度是53度左右)。竖直方向飞行则为90度。

3气塞使用。气塞的使用原理是通过压缩软胶塞体积膨胀来调节气塞的松紧程度,压缩越厉害体积膨胀越大,气塞越紧,要把气塞冲出来的气压就越大,即火箭获得的动力越大。具体使用方法如下:首先拆下气塞的气门芯,将气塞在原形塞进火箭的瓶口内,然后用套筒(一种专门用来拧螺丝的工具,五金店有卖)拧紧气塞的螺丝,最后安装气门芯即可加气使用。(注:拧紧程度可按需要来调节。)

4发射稳定调控。仅讨论水平方向的发射。需要制作一个发射台,发射台要配有导航轨道,导航轨道不要太长也不要太短,一般长为60cm(可用三个教学用的大三角板和两根扫帚柄拼凑而成,为减少扫帚柄作导航轨道时对水火箭的摩擦,可用透明胶粘贴扫帚柄或如图例所示的模型)。无风天气时,正对目标按最佳发射角度(指发射轨道与地面的夹角)发射。刮风天气时,应视风力和风向适当调偏与发射目标的方向,保持最佳发射角度发射。

5注意事项。发射时,确保火箭和轨道的平直一致,若偏离1~2度都会影响飞行的平稳性而呈“8”字型飞行。用气筒打气时,要尽可能平稳,打气频率不要太慢应快点。要尽可能将气塞塞紧,可通过拧紧气塞的螺丝来调节,气塞塞得越紧瓶内气压越大而火箭的动力就越大。

取第一个瓶子,称之为A瓶。在瓶子上下1-1、2-2的位置各画一条线,两条线位置的决定方法如下。

1-1:选瓶上弧线曲度与火箭泡棉头曲度相近处。

2-2:选瓶子下方曲线转直点的下方约0.5cm处。

自1-1线上方、2-2线下方约0.5cm处用美工刀(或剪刀)切(剪)开。

用剪刀慢慢修剪至画线处,尽量使其平整,以便与B瓶衔接时可以较为密合。

将火箭泡棉头放置於A瓶上方,由正上方看泡棉头是否对准保特瓶之正中央位置。若已放正,则使用电工胶布缠绕於相接处,加以固定。

取另一个瓶子称之为B瓶,将瓶盖卸下,然后将喷嘴由保特瓶开口处旋紧。

将A、B瓶相连接。然后至於平坦之桌面或地上滚动,看看是否连接平整,滚动是否平顺。若是,则以电工胶布加以固定。

连接完成图

取第三个瓶子,称为C瓶。在瓶子3-3、4-4之位置各画一条线。

3-3:选瓶子上方曲线转折点的下方约0.5cm。

4-4:选瓶子下方曲线转折点的下方约0.5cm。

自3-3线上方、4-4线下方约0.5cm处用美工刀(剪刀)切(剪)开。

C瓶完成图

将厚纸板对折,然后用铅笔画出四个梯形。然后用剪刀沿线剪开。

注:尾翼之尺寸、形状,可以做不同的变化,以测试其对飞行有何影响。

同样以投影片至做出与厚纸板规格相同之梯形。

将制作好之投影片包覆於厚纸板梯形之外侧,可以先使用双面胶带将投影片及厚纸板接合在一起,然后使用电工胶布将其三边贴过。

用双面胶带贴於摺起部分之底部。此步骤为了将做好之四个尾翼年贴於C瓶。

四个尾翼完成图。

将四片尾翼年贴於C瓶上,需确定为十字对称,如此才能平衡。

先以电工胶布黏贴於尾翼两侧,黏贴时须注意电工胶布的长度须够长,上方需比尾翼高约一个胶带的高度,下方反折入C瓶内,以增加牢固程度。再以电工胶布缠绕於尾翼上方约两圈。

将C瓶与B瓶用电工胶布做连接。

注:同样须注意保持水火箭箭身的笔直以确保飞行方向的准确。

保特瓶水火箭完成图。

制作飞机模型的方法及工具如下:望采纳谢谢常用的工具有:尺、刀、刨、锯、锉、钻、钳子、剪子、扳手、笔、烙铁等。各工具要正确使用,以发挥工具的作用,使模型制作的精度、准确度不断提高,制作出性能优良的模型飞机。尺要注意平直度。刀要锋利使用时不要逆着木纹切削。刨用模型专用小刨,平整大模型的表面可以提高工作效率及制作精度。锯的使用,因制作模型用材料都不是很大很厚的材料,通常用齿比较小的锯条,可根据情况选择自己顺手的锯使用,还常使用到曲线锯。锉的使用,粗锉用于毛坯和加工余量大的工件,以提高效率;细锉用于精加工,以保证加工件的准确度;油光锉用于表面光滑度较高的精细工件。模型中制作最常用的是什锦锉。钻的使用,特别是遥控类模型制作中圆眼较多,在材料不厚的情况下可利用一些材料自制小棱钻和扁钻,较厚材料可采用电钻等工具进行,如果条件允许可采用小型台式电钻。材料的选择较常用的材料有桐木、松木、椴木、桦木、水松、轻木、层板等。制作手掷、弹射模型时多选择桐木。对于构造式机翼的材料选择,如翼梁是细长的,又是主要受力件,就要选择强度较大纹理平直的松木。翼肋主要是保持翼型形状受力不大,可选重量轻有一定强度的桐木或轻木。翼根翼尖等整形填充件,受力很小做得越请越好,可选择比较轻的桐木、轻木或水松。在保证强度的前提下,应选择材质均匀、纹理平直、无疤节、比重轻的材料,以达到保证强度和减轻重量的要求。桐木是最常用的模型材料,尤其是泡桐,具有比重轻、相对强度大、变形小、容易加工的特点。翼肋、蒙板、腹板、机身后段等应选用较轻的材料。后缘、尾翼梁、机身的纵梁等要用木质细密、纹理平直、强度较大的材料。松木东北松纹理均匀,木质细密,比较轻,不易变形,易于加工并富有弹性,是做模型中细长受力件的好材料。桦木材质坚硬,纹理均匀紧密,比重较大,是做螺旋桨的好材料。还可做发动机架等受力件。椴木是制作向真模型好材料,也可用于硬壳机身、螺旋桨和发动机架等。水松松软、纹理乱、易变形用作整形和填充。轻木制作模型较桐木好,可提高飞行性能,但价钱较高。木料在使用时要考虑强度、刚性等特性。我国早在800多年前宋朝时期,建筑工匠李诫就将建筑用材料断面高度与宽度比定为3∶2。到了十八世纪末十九世纪初,英汤姆士杨研究发现材料截面高与宽成3.46∶2时,刚性最大;高与宽成2.8∶2时强度最大;高度与宽度相等时,弹性最大。在使用时根据模型的大小、结构来选择合适材料。层板椴木层板常用作机身隔框、上反角加强片等;桦木层板可做强度很大的蒙板,翼根部的翼肋、隔框和加强片等。竹子也较常用在普及级模型上。蒙皮传统工艺用棉纸和尼龙绢,后发展用无纺布以及新型材料热缩膜。在模型上根据需要也用桐木蒙皮,利用热缩膜可以节省一定资金但主要是大大简化制作程序,缩短了制作时间。胶合剂较常用的有白乳胶、树脂胶、502等。快干胶需自己配制,使用范围广,粘接较方便,缺点是有毒,不宜长期使用。白乳胶价格低廉,因固化时间太长,不利于模型的定型。易于定型的或利用工作台可以定型的模型及部件常使用白乳胶胶合。树脂胶因性能稳定、耐水、耐油、耐腐蚀而适用于发动机架等受力部件,要严格按胶合说明进行以保证胶合质量,还可用于修复工作等。502适于间隙小处缝隙的连接、修补,使用时要注意不要沾在手上。木料的加工裁割将木片多余的部分裁去,或是从木片上截取所需的木条和前后缘、腹板、翼肋等。裁割时注意木纹方向,用力要先轻后重逐渐加力直至裁断,不可一刀裁,尤其是裁弧线时更要注意。刨削因现在制作材料多代为刨削,一般很少刨削木条、木片,除非自己制作或活动用较特殊规格的材料。现多用在制作遥控类较大模型机身或向真模型时,需要用刨削的方法修整表面,提高工作效率和制作质量。拼接用于木片的加宽和加长,注意拼接后要保持平整,加厚处理时要注意年轮的方向,使拼接后不宜弯曲变形。打磨打磨时要顺木纹方向,用力要均匀先重后轻,并选择合适的砂纸进行打磨。抛光前常用水砂纸打磨。弯曲在制作椭圆翼尖的前后或卷制薄壳机身时,都要将木料进行弯曲。主要方法有:火烤、水煮、冷弯。可根据自己的喜好习惯使用。在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。其技术要求是:最大飞行重量同燃料在内为五千克;

最大升力面积一百五十平方分米;

最大的翼载荷100克/平方分米;

活塞式发动机最大工作容积10亳升。

1、什么叫飞机模型

一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。

2、什么叫模型飞机

一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、模型飞机的组成

模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。

3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

三、航空模型技术常用术语

1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。第一节活动方式和辅导要点

航空模型活动一般包括制作、放飞和比赛三种方式,也可据此划分为三个阶段。

制作活动的任务是完成模型制作和装配。通过制作活动对学生进行劳动观点、劳动习惯和劳动技能的教育。使他们学会使用工具,识别材料、掌握加工过程和得到动手能力的训练。

放飞是学生更加喜爱的活动,成功的放飞,可以大大提高他们的兴趣。放飞活动要精心辅导,要遵循放飞的程序,要介绍飞行调整的知识,要有示范和实际飞行情况的讲评。通过放飞对学生进行应用知识和身体素质的训练。

比赛可以把活动推向高潮,优胜者受到鼓舞,信心十足:失利者或得到教训,或不服输也会憋足劲头。是引导学生总结经验,激发创造性和不断进取精神的好形式。参加大型比赛将使他们得到极大的锻炼而终生不忘。

第二节飞行调整的基础知识

飞行调整是飞行原理的应用。没有起码的飞行原理知识,就很难调好飞好模型。辅导员要引导学生学习航空知识,并根据其接受能力、结合制作和放飞的需要介绍有关基础知识。同时也要防止把航模活动变成专门的理论课。

一、升力和阻力

飞机和模型飞机之所以能飞起来,是因为机翼的升力克服了重力。机翼的升力是机翼上下空气压力差形成的。当模型在空中飞行时,机翼上表面的空气流速加快,压强减小;机翼下表面的空气流速减慢压强加大(伯努利定律)。这是造成机翼上下压力差的原因。

造成机翼上下流速变化的原因有两个:a、不对称的翼型;b、机翼和相对气流有迎角。翼型是机翼剖面的形状。机翼剖面多为不对称形,如下弧平直上弧向上弯曲(平凸型)和上下弧都向上弯曲(凹凸型)。对称翼型则必须有一定的迎角才产生升力。

升力的大小主要取决于四个因素:a、升力与机翼面积成正比;b、升力和飞机速度的平方成正比。同样条件下,飞行速度越快升力越大;c、升力与翼型有关,通常不对称翼型机翼的升力较大;d、升力与迎角有关,小迎角时升力(系数)随迎角直线增长,到一定界限后迎角增大升力反而急速减小,这个分界叫临界迎角。

机翼和水平尾翼除产生升力外也产生阻力,其他部件一般只产生阻力。

二、平飞

水平匀速直线飞行叫平飞。平飞是最基本的飞行姿态。维持平飞的条件是:升力等于重力,拉力等于阻力(图3)。

由于升力、阻力都和飞行速度有关,一架原来平飞中的模型如果增大了马力,拉力就会大于阻力使飞行速度加快。飞行速度加快后,升力随之增大,升力大于重力模型将逐渐爬升。为了使模型在较大马力和飞行速度下仍保持平飞,就必须相应减小迎角。反之,为了使模型在较小马力和速度条件下维持平飞,就必须相应的加大迎角。所以操纵(调整)模型到平飞状态,实质上是发动机马力和飞行迎角的正确匹配。

三、爬升

前面提到模型平飞时如加大马力就转为爬升的情况。爬升轨迹与水平面形成的夹角叫爬升角。一定马力在一定爬升角条件下可能达到新的力平衡,模型进入稳定爬升状态(速度和爬角都保持不变)。稳定爬升的具体条件是:拉力等于阻力加重力向后的分力(F=X十Gsinθ);升力等于重力的另一分力(Y=GCosθ)。爬升时一部分重力由拉力负担,所以需要较大的拉力,升力的负担反而减少了(图4)。

和平飞相似,为了保持一定爬升角条件下的稳定爬升,也需要马力和迎角的恰当匹配。打破了这种匹配将不能保持稳定爬升。例如马力增大将引起速度增大,升力增大,使爬升角增大。如马力太大,将使爬升角不断增大,模型沿弧形轨迹爬升,这就是常见的拉翻现象(图5)。

四、滑翔

滑翔是没有动力的飞行。滑翔时,模型的阻力由重力的分力平衡,所以滑翔只能沿斜线向下飞行。滑翔轨迹与水平面的夹角叫滑翔角。

稳定滑翔(滑翔角、滑翔速度均保持不变)的条件是:阻力等于重力的向前分力(X=GSinθ);升力等于重力的另一分力(Y=GCosθ)。

滑翔角是滑翔性能的重要方面。滑翔角越小,在同一高度的滑翔距离越远。滑翔距离(L)与下降高度(h)的比值叫滑翔比(k),滑翔比等于滑翔角的余切滑翔比,等于模型升力与阻力之比(升阻比)。 Ctgθ=1/h=k。

滑翔速度是滑翔性能的另一个重要方面。模型升力系数越大,滑翔速度越小;模型翼载荷越大,滑翔速度越大。

调整某一架模型飞机时,主要用升降调整片和重心前后移动来改变机翼迎角以达到改变滑翔状态的目的。五、力矩平衡和调整手段

调整模型不但要注意力的平衡,同时还要注意力矩的平衡。力矩是力的转动作用。模型飞机在空中的转动中心是自身的重心,所以重力对模型不产生转动力矩。其它的力只要不通重心,就对重心产生力矩。为了便于对模型转动进行分析,把绕重心的转动分解为绕三根假想轴的转动,这三根轴互相垂直并交于重心(图 7)。贯穿模型前后的叫纵轴,绕纵轴的转动就是模型的滚转;贯穿模型上下的叫立轴,绕立轴的转动是模型的方向偏转;贯穿模型左右的叫横轴,绕横轴的转动是模型的俯仰。

对于调整模型来说,主要涉及四种力矩;这就是机翼的升力力矩,水平尾翼的升力力矩;发动机的拉力力矩;动力系统的反作用力矩。

机翼升力力矩与俯仰平衡有关。决定机翼升力矩的主要因素有重心纵向位置、机翼安装角、机翼面积。

水平尾翼升力力矩也是俯仰力矩,它的大小取决于尾力臂、水平尾翼安装角和面积。

拉力线如果不通过重心就会形成俯仰力矩或方向力矩,拉力力矩的大小决定于拉力和拉力线偏离重心距离的大小。发动机反作用力矩是横侧(滚转)力矩,它的方向和螺旋桨旋转方向相反,它的大小与动力和螺旋桨质量有关。

俯仰力矩平衡决定机翼的迎角:增大抬头力矩或减小低头力矩将增大迎角;反之将减小迎角。所以俯仰力矩平衡的调整最为重要。一般用升降调整片、调整机翼或水平尾翼安装角、改变拉力上下倾角、前后移动重心未实现。

方向力矩平衡主要用方向调整片和拉力左右倾角来调整。横侧力矩平衡主要用副翼来调整。

第三节检查校正和手掷试飞

一、检查校正

一架模型飞机制作装配完毕后都应进行检查和必要的校正。检查的内容是模型的几何尺寸和重心位置。检查的方法一般为目测,为更精确起见,有些项目也可以进行一些简单的测量。

目测法是从三视图的三个方向观察模型的几何尺寸是否准确。正视方向主要看机翼两边上反角是否相等;机翼有无扭曲;尾翼是否偏斜或扭曲。侧视方向主要看机翼和水平尾翼的安装角和它们的安装角差;拉力线上下倾角。俯视方向主要看垂直尾翼有无偏斜;拉力线左右倾角情况;机翼、水平尾翼是否偏斜。

小模型一般用支点法检查重心,选一点支撑模型,当模型平稳时,该支点就是重心的位置。

检查中如发现重大误差,应在试飞前纠正。如误差较小,可以暂不纠正,但应心中有数,在试飞中进一步观察。

二、手掷试飞

手掷试飞的目的是观察和调整滑翔性能。方法是右手执机身(模型重心部位),高举过头,模型保持平正,机头向前正对风向下倾10度左右,沿机身方向以适当的速度将模型直线掷出,模型进入独立滑翔飞行状态。手掷方法要多次练习,要注意纠正各种不正确的方法,比较普遍的毛病有:模型左右倾斜或机头上仰;出手不是从后向前的直线,而是绕臂根划弧线;出手方向不是沿机身向前,而是向上抛掷;出手速度太大或太小。

出手后如模型直线小角度平稳滑翔属正常飞行,稍有转弯也属正常状态。遇有下列不正常的飞行姿态,就应进行调整,使模型达到正常的滑翔状态

1、波状飞行:滑翔轨迹起伏如波浪。一般称之为“头轻”即重心太靠后。这种说法虽正确但不够全面。实际上一切抬头力矩过大或低头力矩过小造成的迎角过大都会造成波状飞行。调整的方法有:a、推杆(升降调整片下扳);b、重心前移(机头配重);c、减小机翼安装角;d、加大水平尾翼安装角(作用同推杆)。

2、俯冲:模型大角度下冲。一般叫“头重”,这种说法也不够全面。一切抬头力矩过小,低头力矩过大造成的迎角过小都会造成模型俯冲。调整的方法有:a、拉杆(升降调整片上翘);b、重心后移(减少机头配重);c、加大机翼安装角;d、减小水平尾翼安装角(作用同拉杆)。

3、急转下冲:模型向左(或向右)急转弯下冲。原因是方向力矩不平衡或横侧力矩不平衡。具体原因多为机翼扭曲造成的左右升力不等或垂直尾翼纵向偏转形成的方向偏转力矩。机身左右弯曲的后果与垂直尾偏转相同,也可能造成急转下冲。调整的方法有:a、向转弯反向扳方向调整片(蹬舵);b、修正机翼扭曲(相当于压杆操纵副翼)。

飞机或高级模型飞机的操纵其原理和调整模型相同,都是改变力矩平衡状态。初级模型一般没有这些舵面,只好用改变这些空气动力面形态的方法来达到调整的目的,方法有三种:

a、加温定形:把需要调整的部位用手扳到一定角度同时加温(哈气、吹热风、烘烤等),停留一定时间使之变形。这种方法适用于纸、吹塑纸、木片部件。一般扳动角度越犬,温度越高,保持时间越长调整变形越多。

b、收缩变形:在需要调整的翼面的一面刷适当浓度的透布油,这一面将随透布油固化而收缩使翼面交形。

c、型架定形。将翼面按调整要求在型架上固定达到改变形态的目的。一般配合使用加温或刷涂料。这种方法适用于构架式的翼面的调整。第四节手掷直线距离科目

一、三种飞行方式

本科目是在限定宽度条件下比赛往返手掷飞行距离。决定成绩的因素有三个:a、投掷技术;b、模型的滑翔性能;c、模型的直线飞行性能。飞行方式有以下三种:

1、自然滑翔直线飞行:出手速度和模型的滑翔速度相同,出手后模型沿滑翔轨迹直线滑翔,飞行距离取决于出手高度和滑翔比,一般在6一10米之间。

2、水平前冲直线飞行:出手速度稍大于模型的滑翔速度,出手后模型先水平直线前冲一段距离后过渡到自然滑翔。这种方式比自然滑翔距离可能提高2一5米。

3、爬升前冲直线飞行:以更大的速度出手并且可以有小的出手角。出手后模型沿小角度直线爬升,然后转入滑翔。这种方式可能比自然滑翔距离提高5一10米以上。

第一种方式成绩较低,但容易掌握,成功率高。后两种方式飞行距离远,但放飞、调整技术难度大、成功率较低。因为(a)方向偏差和飞行距离成正比,增大飞行距离后模型飞出边线机率增加(飞出边线后成绩无效);(b)前冲特别是爬升前冲容易使模型失速下冲或改变航向飞出边线。因此,为了取得好的成绩,就需要了解更多的飞行调整知识,提高体能,熟练地应用投掷技巧。二、模型的调整

1、滑翔性能。滑翔性能是飞出较大直线距离的基础。调整时应注意两个问题。一个是最大限度的减小阻力,模型表面要保持光滑,零部件采用流线形(也括配重),前后缘打磨为圆形,翼面平整不要扭曲等,减小阻力可以增大升阻比,即可以增大滑翔比。

第二点是调整到有利迎角。迎角由升降调整片来控制。不同迎角模型的升阻比不同,有利迎角升阻比最大,同一高度的滑翔距离最远。正常滑翔后,还需微调升降调整片,找到一个最佳舵位。

2、模型的配重。许多人有一种印象,似乎模型越重越飞不远。其实不然。模型的滑翔比和重量无关。另一方面,重量小模型的动能就小,克服阻力的能力就小,手掷距离反而小。轻飘飘的稻草扔不远也是这个道理。所以,手掷直线距离项目的模型,在规则允许的范围内,应适当增大重量,以加大模型的动能。

3、机翼的刚性。手掷模型的初速较大,机翼承受弯曲力矩大,容易变形甚至颤振而影响飞行性能。为此,制作时要小心操作,不让翼面出现折痕。如刚性仍不足,就要适当加强。方法是在翼根和机身接合处抹胶水,也可在翼根部单面域双面贴加强务(如胶带纸)。

4、直线飞行的调整

a、理想的直线飞行是模型既没有方向不平衡力矩又没有横侧不平衡力矩,即垂直尾翼没有偏角(方向调整片中立位置),左右机翼完全对称(没有副翼作用)。这种情况不但阻力最小,而且能适应速度的变化。

b、实际上模型一般总是转弯的,原因不外乎机翼不对称(多数情况是机翼扭曲),产生了滚传力矩,或是垂直尾翼有偏角产生了方向力矩。遇到这种情况最好查明原因“对症下药”,以达到接近理想的直线飞行。我们把这种调整方法叫做“直接调整法”。

c、还有一种调整方法,例如由于机翼扭曲产生向左滚转的力矩,模型向左倾斜,升力向左的分力使模型左转弯。这种情况不直接纠正机翼的扭曲,而是给一点右舵,也可以使模型直飞。这种调整方法叫“间接调整法”。间接调整虽然也能实现直线飞行,但这种直线飞行是有缺陷的:一是增大了阻力,降低了滑翔性能;二是难于适应速度的变化,不少模型前一段基本上能保持直线,后一段转弯偏航,其原因多半是间接调整造成的。

因此,应尽量采用“直接调整法”,避免“间接调整法”。

5、克服前冲失速的方法

前面提到前冲和前冲爬升可以大幅度提高飞行成绩,但同时又存在失速下冲和失速转向的危险。因此克服前冲失速是提高成绩的关键。

克服前冲失速的措施是提高俯仰安定性。具体做法是适当配重前移重心,同时相应加大机翼,水平尾翼的安装角差,以保持俯仰平衡。这样当模型前冲抬头机翼逐渐接近失速时,水平尾翼因按装角小尚未失速,水平尾翼仍有足够的低头力矩使模型转入滑翔。

克服前冲失速的另一个办法是用较小的迎角飞行。事实证明,迎角越大越容易失速下冲,迎角越小越不容易进入失速下冲。

失速转弯是机翼扭曲造成的,机翼扭曲时,必有一侧安装角交大(另一侧变小),接近失速时这一半机翼先失速,并使模型倾斜转弯。前面提到的间接调整的缺陷尤其表现在这种情况,所以机翼的扭曲必须彻底纠正。

三、投掷技巧

模型调好之后,决定飞行成绩完全取决于投掷技巧了。好的技巧能充分发挥模型的飞行性能,甚至可以弥补模型的某些缺陷。所以,并不是一投了事,要反复练习掌握要领:

1、助跑、投掷的动作要协调,使模型保持平稳,忌抖动和划圆弧。

2、恰当的出手速度。出手速度不是固定不变的,不同的调整状况,不同的飞行方式,不同的风速风向要求有不同的出手速度。争取做到随心所欲,准确无误。

3、恰当的出手角度。一般自然滑翔方式出手应有一个很小的负角;水平前冲方式的出手角一般为零度(水平);爬升前冲方应有一个适当的正角(仰角)。

4、出手点和出手方向:如果模型是完全直线飞行的,在无风情况下,运动员应在起飞线的中点向正前方出手,这样成功率最高。但事实上转弯的模型占绝大多数,侧风放飞的情况也占大多数。聪明的运动员善于利用出手点和出手方向的变化来修正由于侧风和模型转变引起的偏差。例如右转弯模型如果在起飞线正中放飞就可能从右方飞出边线,如果又碰上左侧风,情况就更严重。假如换一个方法——出手点选在起飞线左侧,出手方向有意识左偏。这样前半段模型可能在空中飞出左边线,而后半段可能绕回来在场内着陆,使成绩有效。

5、风与投掷时机:风对飞行的影响有不利的一面,另外也有有利的方面。例如顺风能增大飞行距离;逆风则减小飞行距离,侧风有时加剧偏航,有时又减小偏航。风一般是阵性的,风速和风向在不断变化。要善于捕捉最佳出手时机。例如顺风时最好大风瞬间出手,逆风时在弱风瞬间出手。

转载请注明:片头模版 » 模型制作说明(废品利用手工制作小火箭说明书)

发表我的评论
取消评论

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)

网友最新评论 ()